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The flow conditions for a low-density [rarefied] gas differ considerably 
from those for a continuous medium, as does the mechanism of interaction 
with a surface. In particular, the boundary layer and the shock wave 
become broader, and the aerodynamic and heat-transfer characteristics 
are thereby affected. 

Of particular interest is the transition from a continuous medium 
to free-molecular flow. The methods of kinetic theory may be used 
to describe processes in low-denslty gases, but they are very com- 
plicated, so the Navier-Stokes equations are often used in conjunction 
with the equations for the boundary layer in the transition region, with 
boundary conditions that take into account the altered interaction. In 
particular, the Navier-Stokes equations predict a structure for a shock 
wave that agrees well with experiment [1]. 

Although there are several largely theoretical papers on the transi- 
tion region [1-3] ,  many aspects have not been elucidated, and this 
hinders consideration of the flow mechanism. There are very few ex- 
perimental studies in this region, and these have employed mainly 
gasdynamic methods. One reason for this is the low state of develop- 
ment of optical methods for studying low-density flows. 

Interferometry is the most widely used method of examining gas- 
dynamic processes in a continuous medium. Since a low-density gas 
flowing around a model produces only a very small density change, 
the recording of phase shifts requires interference systems of high 
sensitivity such as a mulgple-beans interferometer, in which the 
beam passes repeatedly through the object and so provides higher 
sensitivity than does a single transit [5, 6]. 

Figure 1 shows the apparatus. The multiple-beam interferometer 
consists of two plane-parallel plates 5 bearing semitransparent multi- 
layer dielectric coatings (reflectivity A = 85%). Light source 1 (low- 
pressure mercury lamp) works into filter 2 and lens 3, which together 
produce a collimated beam of monochromatic light. The interference 
pattern is recorded with tire optical system consisting of lens 8, stop 9, 
and camera 10. The gas jet from nozzle 6 passes between the mirrors 
and falls on model 7. The chamber is fitted with protective glass 
windows 4. 

The instrument is used and the patterns are processed as previously 
described [8]. k notable feature is the use of remote control of the 
interferemeter plates, together with the inverse piezoelectric effect 
for fine adjustment [7], in which one varies the voltage applied to three 
barium titanate ceramic spacers attached to one of the mirrors. After 
the plates have been set parallel (e. g . ,  via equal-inclination fringes), 
stop 9 is set in the focal plane of lens 8 to isolate the central part of 
the fringe system, which is then seen as a uniformly illuminated area. 
The sensitivity is substantially dependent on the illumination level 
relative to the maximum [8], so the control voltage is adjusted to the 
optimum setting, i. e. ,  the one giving maximum contrast. 
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Fig. i 

The patterns are interpreted by means of the differences in density 

corresponding to the incident flow (D~o) and the shock layer (D s ). This 
method has [6] been applied to two-dimensional flows. Here our tech- 
nique was adapted to the axial symmetry of the flow. 

The increment in the density p at a point in the field relative to 
the density p~ of the unperturbed flow is [6, 9,10] given by 

d :t (Ds --Doo) r 'dr*  

p- Poo ~K~y* e~* . -17 ;,~_ rr ' 

r i * = y / r  ~ r * = r / r  ~ 

in which k is the wavelength of the light, K is Gladstone's constant, 
y is the coordinate along the beam in the flow (the y-axis lies in a 
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plane normal to the axis of the flow), r ~ is the radius of the axially 

symmetric flow, and r is the radial coordinate for the beam in the 

flow. 

The quantity ~ is [6, 8-10] expressed as 

16a, T [2.3.4 (Dma x -- D~) / T] % 
~ =  2.3 [ t + 2 . 3 ( D m a x - - D o ~ ) / z l ( t - - A  ) '  

in which y is the contrast factor of the photographic material and 
Dmax is the density at the peak of an interference fringe. 

The cross section of the axially symmetric inhomogeneity is 
divided into N = 5 annuli, in each of which the density difference 
is represented by a polynomial of second degree by means of the 
observed densities at the edges and center. The density increment is 

gN--I 

P:~ -- Poo = 2 aj, i [D (ri) -- Dec ] , 
j ~ i - 1  

in which rj is the radius of zone j and a is a constant which can be 
calculated [9,10]. We have examined the flow around a sphere of 
radius 5 mm at Much numbers M of 3.85-4.02 and Reynolds numbers 
(calculated from the flow parameters)R of 75-230. 

Figure 2 shows the observed result for the density distribution in 
front of the sphere for M~ = 4.02 and R= 230, the ordinate being 
the distance r from the axis and the abscissa being the axial coor- 
dinate z, the origin lying at the center of the sphere. The curves are 
lines of equal p/p~.,. Figures 3 and 4 show density profiles for the 

shock wave near the front critical point of the sphere at R of 75 and 
230 respectively. The observed p/p~ for various z are as follows: 

z = 5.25 5,45 5.75 5.95 (for R = 7 5 )  
p / p ~  = 4.6 3.5 '1.2 'i.05 
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z = 5.35 5.55 5.65 5.75 (for R = 230) 
p/pco = 4.3 2.3 t .8 t.45 

Curves 2 in Figs. 3 and 4 are from [11] and represent the profile 
of the shock wave calculated as a function of M and the mean free 
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Fig. 3 

It has been assumed in the solution that a thin shock wave is 
formed around the sphere, whose shape is nearly spherical in the 
region of the critical point. The entire space between the shock wave 
and the body is occupied by a viscous layer. As external boundary 
conditions we took Hugoniot's relations at the step, on the assumption 
of absence of slip and of a heat flux from the surface. As the discus- 
sion was restricted to the region of the critical point, there was local 
similarity [3]. The numerical integration was performed for M~o = 
= 5, ~= Cp/Cv = 1.4, and P= 0.72 for Rofl0O-1000.  

Figure 5 shows that the thickness of the shock layer falls as the 
density increases, and the shock wave approaches the body. The 
discrepancy between the theoretical and experimental curves increases 
somewhat with R. The smaller discrepancy for small R may be as- 
cribed to the completely viscous dissipative layer behind the step 
(Fig. 3), but the shock wave is diffuse in the range examined, which 
conflicts with the viscous-layer model used. On the other hand, the 
Hugoniot relations at the step are obeyed (within the error of experi- 
ment) before the gas flow reaches the body. This explains the rea- 
sonably satisfactory agreement between the observed and calculated 
curves in Fig. 5. 

path in the incident flow. Curves 3 are for a continuum [4] and allow 
one to estimate the distance to the shock wave and P/P~o. The ob- 
served curves 1 and Mort-Smith curves 2 have been placed to bring 
the inflection on the latter at the point z* on the experimental curve 
with the same ordinate [12,13]. The curves show that the shock wave 
is broad (~8-10 mean free paths) in the range of R used. These results 
are somewhat larger than those previously given [1, 2,12,13].  The 
difference arises because we have taken as the thickness of the shock 
wave the value z* at which p differs from the density in the incident 
flow and behind the step by roughly 5%. For R = 230 there is a fairly 
broad region in which the density in the shock layer is virtually un- 
altered; the density behind the step takes virtually the continuum 
value calculated from Hugoniot's relations. The thickness is greater 
at R = 75, and Hugoniot's relations continue to apply, but there is no 
obvious zone of constant density. In this case there is no separate zone 
of nonviscous flow. The boundary layer and shock wave begin to meet. 

Both modes have gradual density change in the shock wave, slower 
on the incident side. 

The separation of the shock has [12,13] been taken as the distance 
from the body to point z*, but we consider it more correct to take 
the start as the zone where p/poo starts to differ from unity, e . g . ,  by 
5%. The separations A ~ measured in this way for various R are shown 
by curve 1 in Fig. 5, where curve 2 represents the results given by the 
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Navier-Stokes equations for a viscous shock layer in flow around a 
thermally insulated body. The A ~ for the various R are as follows: 

B = t00 200 400 600 700 
A ~ = 0.179 0.172 0.t60 0.154 0.t52 (cain.) 
A ~ ~ 0.t7t 0.162 0.t4t 0.t24 0.t2t (exp.) 
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Fig. 5 

Our results and conclusions agree well with Ivanov's [12,13]; he 
examined the flow around a sphere at M~o = 6 and R~ = 200 by 
means of an electron beam. 
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